If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+40x-2400=0
a = 2; b = 40; c = -2400;
Δ = b2-4ac
Δ = 402-4·2·(-2400)
Δ = 20800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20800}=\sqrt{1600*13}=\sqrt{1600}*\sqrt{13}=40\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40\sqrt{13}}{2*2}=\frac{-40-40\sqrt{13}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40\sqrt{13}}{2*2}=\frac{-40+40\sqrt{13}}{4} $
| 0.5+l=7+4.5 | | 4(n-1)=1.5n+5 | | 3-2(7+4x)=49+4x | | 2(h+14)=14 | | (w+2)^2=24 | | -(v+9)=-15 | | –5g−7=3g+1 | | X²-20x-55=0 | | 3q=6+4q | | (3x+2)+(6x-118)=180 | | F(x)=2(x+3)^2+25 | | -5=-(r+2) | | x−12=8 | | 10/3=4/3x | | 8=2(g+3) | | 4t-3+t=11+6t-3 | | x²+5x-126=0 | | -(u+-8)+-10=-4 | | 5.9g+6=3.9+12 | | 15.8=0.3+p | | -3x+23=3x-7 | | 3(u+5)+1=19 | | 5x+7+86=29x-3 | | j+9−3=8 | | 5x8+4=3x8+12 | | 6x–4x–8=32 | | 0.5^x=0.625 | | 35.3=k+16.5 | | 9x+5+55=20x+5 | | 27=m+15.7 | | 15x+3x-16x=16 | | 2.3+a=11.87 |